Nr 2, 2023: Svampar – de goda och de ond

Svamparnas läkande kraft:

Svamparnas läkande kraft:

1.      Gründemann C, Reinhardt JK, Lindequist U. European medicinal mushrooms: Do they have potential for modern medicine? – An update. Phytomedicine. 2020 Jan;66:153131.

2.      AMERICAN PHYSIOLOGICAL SOCIETY. Rare Chinese mushroom derivative can improve capacity, endurance, in sedentary elderly. Pressmeddelande 2004-04-19. https://www.eurekalert.org/news-releases/481021

3.      Das G, Shin HS, Leyva-Gómez G, Prado-Audelo MLD, Cortes H, Singh YD, Panda MK, Mishra AP, Nigam M, Saklani S, Chaturi PK, Martorell M, Cruz-Martins N, Sharma V, Garg N, Sharma R, Patra JK. Cordyceps spp.: A Review on Its Immune-Stimulatory and Other Biological Potentials. Front Pharmacol. 2021 Feb 8;11:602364.

4.      Anusiya G, Gowthama Prabu U, Yamini NV, Sivarajasekar N, Rambabu K, Bharath G, Banat F. A review of the therapeutic and biological effects of edible and wild mushrooms. Bioengineered. 2021 Dec;12(2):11239-11268.

5.      Xia Y, Wang D, Li J, Chen M, Wang D, Jiang Z, Liu B. Compounds purified from edible fungi fight against chronic inflammation through oxidative stress regulation. Front Pharmacol. 2022 Sep 9;13:974794.

6.      Stier H, Ebbeskotte V, Gruenwald J. Immune-modulatory effects of dietary Yeast Beta-1,3/1,6-D-glucan. Nutr J. 2014 Apr 28;13:38.

7.      Bains A, Chawla P, Kaur S, Najda A, Fogarasi M, Fogarasi S. Bioactives from mushroom: health attributes and food industry applications. Materials. 2021;14:247640.

8.      De Marco Castro E, Calder PC, Roche HM. β-1,3/1,6-glucans and immunity: state of the art and future directions. Mol Nutr Food Res.2021;65:1901071.

9.      Bashir KMI, Choi JS. Clinical and Physiological Perspectives of β-Glucans: The Past, Present, and Future. Int J Mol Sci. 2017 Sep 5;18(9):1906.

10.  Egra S, Kussuma IW, Arung E, Kuspradini H. The potential of white-oyster mushroom (Pleurotus ostreatus) as antimicrobial and natural antioxidant. Biofarmasi J Nat Prod Biochem. 2019;17:102.

11.  Kalaras MD, Richie JP, Calcagnotto A, Beelman RB. Mushrooms: A rich source of the antioxidants ergothioneine and glutathione. Food Chem. 2017 Oct 15;233:429-433.

12.  Liu HM, Tang W, Wang XY, Jiang JJ, Zhang W, Wang W. Safe and Effective Antioxidant: The Biological Mechanism and Potential Pathways of Ergothioneine in the Skin. Molecules. 2023 Feb 8;28(4):1648.

13.  Fu TT, Shen L. Ergothioneine as a Natural Antioxidant Against Oxidative Stress-Related Diseases. Front Pharmacol. 2022 Mar 18;13:850813.

14.  Kalaras MD, Richie JP, Calcagnotto A, Beelman RB. Mushrooms: A rich source of the antioxidants ergothioneine and glutathione. Food Chem. 2017 Oct 15;233:429-433.

15.  Stamets P, Zwickey H. Medicinal Mushrooms: Ancient Remedies Meet Modern Science. Integr Med (Encinitas). 2014 Feb;13(1):46-7.

16.  Radhi M, Ashraf S, Lawrence S, Tranholm AA, Wellham PAD, Hafeez A, Khamis AS, Thomas R, McWilliams D, de Moor CH. A Systematic Review of the Biological Effects of Cordycepin. Molecules. 2021 Sep 28;26(19):5886.

17.  Klupp NL, Kiat H, Bensoussan A, Steiner GZ, Chang DH. A double-blind, randomised, placebo-controlled trial of Ganoderma lucidum for the treatment of cardiovascular risk factors of metabolic syndrome. Sci Rep. 2016 Aug 11;6:29540.

18.  Bell V, Ferrão J, Chaquisse E, Manuel B, Fernandes T. Role of mushrooms in autism. Austin J Nutr Food Sci. 2019;6:1128.

19.  Cui Y, Kim DS, Park KC. Antioxidant effect of Inonotus obliquus. J Ethnopharmacol J Ethnopharmacol. (2005) 96:79–85.

20.  Duarte AP, Luís Â, Gallardo E, Alhallaf W, Perkins LB. The anti-inflammatory properties of Chaga extracts obtained by different extraction methods against LPS-induced RAW 2647. Molecules.2022;27:4207.

21.  Lu Y, Jia Y, Xue Z, Li N, Liu J, Chen H. Recent developments in Inonotus obliquus (Chaga mushroom) polysaccharides: isolation, structural characteristics, biological activities and application. Polymers. 2021;13:91441.

22.  Shahzad F, Anderson D, Najafzadeh M. The antiviral, anti-inflammatory effects of natural medicinal herbs and mushrooms and SARS-CoV-2 infection. Nutrients. 2020;12:2573.

23.  Ham SS, Kim SH, Moon SY, Chung MJ, Cui CB, Han EK, et al.. Antimutagenic effects of subfractions of Chaga mushroom (Inonotus obliquus) extract. Mutat Res Toxicol Environ Mutagen. 2009;672:55–9.

24.  Yu WS, Fung ML, Lee CW, Lim LW, Wong KH. The monkey head mushroom and memory enhancement in Alzheimer’s disease. Cells. (2022) 11:2284.

25.  Mori K, Inatomi S, Ouchi K, Azumi Y, Tuchida T. Improving effects of the mushroom Yamabushitake (Hericium erinaceus) on mild cognitive impairment: a double-blind placebo-controlled clinical trial. Phytother Res. 2009 Mar;23(3):367-72.

26.  Li IC, Chang HH, Lin CH, Chen WP, Lu TH, Lee LY, Chen YW, Chen YP, Chen CC, Lin DP. Prevention of Early Alzheimer’s Disease by Erinacine A-Enriched Hericium erinaceus Mycelia Pilot Double-Blind Placebo-Controlled Study. Front Aging Neurosci. 2020 Jun 3;12:155.

27.  Tian B, Wang P, Xu T, Cai M, Mao R, Huang L, Sun P, Yang K. Ameliorating effects of Hericium erinaceus polysaccharides on intestinal barrier injury in immunocompromised mice induced by cyclophosphamide. Food Funct. 2023 Mar 20;14(6):2921-2932.

28.  Ren Z, Xu Z, Amakye WK, Liu W, Zhao Z, Gao L, Wang M, Ren J. Hericium erinaceus mycelium-Derived Polysaccharide Alleviates Ulcerative Colitis and Modulates Gut Microbiota in Cynomolgus Monkeys. Mol Nutr Food Res. 2023 Feb;67(3):e2200450.

29.  Dasgupta A, Acharya K. Mushrooms: an emerging resource for therapeutic terpenoids. Biotech. 2019;9:2.

30.  Darshani P, Sen Sarma S, Srivastava AK, Baishya R, Kumar D. Anti-viral triterpenes: a review. Phytochem Rev. 2022:1–82.

31.  Choengpanya K, Ratanabunyong S, Seetaha S, Tabtimmai L, Choowongkomon K. Anti-HIV-1 reverse transcriptase property of some edible mushrooms in Asia. Saudi J Biol Sci. (2021) 28:2807.

32.  Shahzad F, Anderson D, Najafzadeh M. The antiviral, anti-inflammatory effects of natural medicinal herbs and mushrooms and SARS-CoV-2 infection. Nutrients. 2020;12:2573.

33.  Jakopovic B, Oršolić N, Kraljević Pavelić S. Antitumor, immunomodulatory and antiangiogenic efficacy of medicinal mushroom extract mixtures in advanced colorectal cancer animal model. Molecules. 2020;25:5005.

34.  Dai X, Stanilka JM, Rowe CA, Esteves EA, Nieves C Jr, Spaiser SJ, Christman MC, Langkamp-Henken B, Percival SS. Consuming Lentinula edodes (Shiitake) Mushrooms Daily Improves Human Immunity: A Randomized Dietary Intervention in Healthy Young Adults. J Am Coll Nutr. 2015;34(6):478-87.

35.  Diallo I, Boudard F, Morel S, Vitou M, Guzman C, Saint N, Michel A, Rapior S, Traoré L, Poucheret P, Fons F. Antioxidant and Anti-Inflammatory Potential of Shiitake Culinary-Medicinal Mushroom, Lentinus edodes (Agaricomycetes), Sporophores from Various Culture Conditions. Int J Med Mushrooms. 2020;22(6):535-546.

36.  Choi JY, Paik DJ, Kwon DY, Park Y. Dietary supplementation with rice bran fermented with Lentinus edodes increases interferon-γ activity without causing adverse effects: a randomized, double-blind, placebo-controlled, parallel-group study. Nutr J. 2014 Apr 22;13:35.

37.  Turk A, Abdelhamid MAA, Yeon SW, Ryu SH, Lee S, Ko SM, Kim BS, Pack SP, Hwang BY, Lee MK. Cordyceps mushroom with increased cordycepin content by the cultivation on edible insects. Front Microbiol. 2022 Oct 19;13:1017576.

38.  Chilton J. Science and Cultivation of Edible Fungi. Int. SocMushroom Science, eds. Baars& Sonnenberg, 2016.

39.  Bing-Ji Ma ,Jin-Wen Shen,Hai-You Yu,Yuan Ruan,Ting-Ting Wu &Xu Zhao. Hericenones and erinacines: stimulators of nerve growth factor (NGF) biosynthesis in Hericium erinaceus. Mycology. 2009;1;2:92-98.

40.  Wolters N, Schembecker G, Merz J. Erinacine C: A novel approach to produce the secondary metabolite by submerged cultivation of Hericium erinaceus. Fungal Biol. 2015 Dec;119(12):1334-1344.

41.  Risoli S, Nali C, Sarrocco S, Cicero AFG, Colletti A, Bosco F, Venturella G, Gadaleta A, Gargano ML, Marcotuli I. Mushroom-Based Supplements in Italy: Let’s Open Pandora’s Box. Nutrients. 2023 Feb 2;15(3):776. doi: 10.3390/nu15030776. PMID: 36771482; PMCID: PMC9919834.

42.  Feng L, Cheah IK, Ng MM m.fl. The Association between Mushroom Consumption and Mild Cognitive Impairment: A Community-Based Cross-Sectional Study in Singapore. J Alzheimers Dis. 2019;68(1):197-203.

Cancer & Svamp

Dohlman AB, Klug J, Mesko M, Gao IH, Lipkin SM, Shen X, Iliev ID. A pan-cancer mycobiome analysis reveals fungal involvement in gastrointestinal and lung tumors. Cell. 2022 Sep 29;185(20):3807-3822.e12.

Straussman R. Pan-cancer analyses reveal cancer-type-specific fungal ecologies and bacteriome interactions. Cell. 2022 Sep 29;185(20):3789-3806.e17.

Weill Cornell Medicine. Fungal Association with Tumors May Predict Worse Outcomes. Pressmeddelande 2022-09-29.

Weizmann Institute of Science. The findings demonstrate that fungi are living in tumors and may facilitate cancer detection, diagnosis and perhaps even treatment. Pressmeddelande 2022-09-29.

Zimmer C. A New Approach to Spotting Tumors: Look for Their Microbes. New York Times 2022-09-29.

Svampväxt i cancertumörer

Kan psykobiotika minska depression och ångest?

  1. Berding, K., Bastiaanssen, T.F.S., Moloney, G.M. et al. Feed your microbes to deal with stress: a psychobiotic diet impacts microbial stability and perceived stress in a healthy adult population. Mol Psychiatry 28, 601–610 (2023).

  2. Accettulli A, Corbo MR, Sinigaglia M, Speranza B, Campaniello D, Racioppo A, Altieri C, Bevilacqua A. Psycho-Microbiology, a New Frontier for Probiotics: An Exploratory Overview. Microorganisms. 2022 Oct 29;10(11):2141.

  3. Del Toro-Barbosa M, Hurtado-Romero A, Garcia-Amezquita LE, García-Cayuela T. Psychobiotics: Mechanisms of Action, Evaluation Methods and Effectiveness in Applications with Food Products. Nutrients. 2020 Dec 19;12(12):3896.

  4. Zhu, X., Sakamoto, S., Ishii, C. et al. Dectin-1 signaling on colonic γδ T cells promotes psychosocial stress responses. Nat Immunol, 2023

  5. Eltokhi A, Sommer IE. A Reciprocal Link Between Gut Microbiota, Inflammation and Depression: A Place for Probiotics? Front Neurosci. 2022 Apr 25;16:852506.

  6. Iesanu MI, Zahiu CDM, Dogaru IA, Chitimus DM, Pircalabioru GG, Voiculescu SE, Isac S, Galos F, Pavel B, O’Mahony SM, Zagrean AM. Melatonin-Microbiome Two-Sided Interaction in Dysbiosis-Associated Conditions. Antioxidants (Basel). 2022 Nov 14;11(11):2244. doi: 10.3390/antiox11112244. PMID: 36421432; PMCID: PMC9686962.

  7. Afridi R, Suk K. Neuroinflammatory Basis of Depression: Learning From Experimental Models. Front Cell Neurosci. 2021 Jul 2;15:691067.

  8. Lasselin J, Benson S, Hebebrand J, Boy K, Weskamp V, Handke A, Hasenberg T, Remy M, Föcker M, Unteroberdörster M, Brinkhoff A, Engler H, Schedlowski M. Immunological and behavioral responses to in vivo lipopolysaccharide administration in young and healthy obese and normal-weight humans. Brain Behav Immun. 2020 Aug;88:283-293.

  9. Millischer V, Heinzl M, Faka A, Resl M, Trepci A, Klammer C, Egger M, Dieplinger B, Clodi M, Schwieler L. Intravenous administration of LPS activates the kynurenine pathway in healthy male human subjects: a prospective placebo-controlled cross-over trial. J Neuroinflammation. 2021 Jul 17;18(1):158.

  10. Mazziotta C, Tognon M, Martini F, Torreggiani E, Rotondo JC. Probiotics Mechanism of Action on Immune Cells and Beneficial Effects on Human Health. Cells. 2023 Jan 2;12(1):184. doi: 10.3390/cells12010184.

  11. Ait-Belgnaoui A., Durand H., Cartier C., Chaumaz G., Eutamene H., Ferrier L., Houdeau E., Fioramonti J., Bueno L., Theodorou V. Prevention of gut leakiness by a probiotic treatment leads to attenuated HPA response to an acute psychological stress in rats. Psychoneuroendocrinology. 2012;37:1885–1895.

  12. Bravo J.A., Forsythe P., Chew M.V., Escaravage E., Savignac H.M., Dinan T.G., Bienenstock J., Cryan J.F. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc. Natl. Acad. Sci. USA. 2011;108:16050–16055.

  13. Bercik P., Park A.J., Sinclair D., Khoshdel A., Lu J., Huang X., Deng Y., Blennerhassett P.A., Fahnestock M., Moine D., et al. The anxiolytic effect of Bifidobacterium longum NCC3001 involves vagal pathways for gut-brain communication. Neurogastroenterol. Motil. 2011;23:1132–1139.

  14. Silva YP, Bernardi A and Frozza RL (2020) The Role of Short-Chain Fatty Acids From Gut Microbiota in Gut-Brain Communication. Front. Endocrinol. 11:25.

  15. Vera-Santander VE, Hernández-Figueroa RH, Jiménez-Munguía MT, Mani-López E, López-Malo A. Health Benefits of Consuming Foods with Bacterial Probiotics, Postbiotics, and Their Metabolites: A Review. Molecules. 2023 Jan 27;28(3):1230.

  16. Lew L.-C., Hor Y.-Y., Yusoff N.A.A., Choi S.-B., Yusoff M.S., Roslan N.S., Ahmad A., Mohammad J.A., Abdullah M.F.I., Zakaria N., et al. Probiotic Lactobacillus plantarum P8 alleviated stress and anxiety while enhancing memory and cognition in stressed adults: A randomised, double-blind, placebo-controlled study. Clin. Nutr. 2019;38:2053–2064.

  17. Hwang YH, Park S, Paik JW, Chae SW, Kim DH, Jeong DG, Ha E, Kim M, Hong G, Park SH, Jung SJ, Lee SM, Na KH, Kim J, Chung YC. Efficacy and Safety of Lactobacillus Plantarum C29-Fermented Soybean (DW2009) in Individuals with Mild Cognitive Impairment: A 12-Week, Multi-Center, Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Nutrients. 2019 Feb 1;11(2):305.

  18. Kato-Kataoka A., Nishida K., Takada M., Suda K., Kawai M., Shimizu K., Kushiro A., Hoshi R., Watanabe O., Igarashi T., et al. Fermented Milk Containing Lactobacillus Casei Strain Shirota Prevents the Onset of Physical Symptoms in Medical Students under Academic Examination Stress. Benef. Microbes. 2016;7:153–156.

  19. Wang, H.; Braun, C.; Murphy, E.F.; Enck, P. Bifidobacterium longum 1714TM strain modulates brain activity of healthy volunteers during social stress. Am. J. Gastroenterol. 2019, 114, 1152–1162.

  20. Maria Ines Pinto-Sanchez, Geoffrey B. Hall, Kathy Ghajar, Andrea Nardelli, Carolina Bolino, Jennifer T. Lau, Francois-Pierre Martin, Ornella Cominetti, Christopher Welsh, Amber Rieder, Jenna Traynor, Caitlin Gregory, Giada De Palma, Marc Pigrau, Alexander C. Ford, Joseph Macri, Bernard Berner, Gabriela Bergonzelli, Michael G. Surette, Stephen M. Collins, Paul Moayyedi, Premysl Bercik. Probiotic Bifidobacterium longum NCC3001 Reduces Depression Scores and Alters Brain Activity: a Pilot Study in Patients With Irritable Bowel Syndrome. Gastroenterology, 2017

  21. Messaoudi M, Violle N, Bisson JF, Desor D, Javelot H, Rougeot C. Beneficial psychological effects of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in healthy human volunteers. Gut Microbes. 2011 Jul-Aug;2(4):256-61. doi: 10.4161/gmic.2.4.16108. Epub 2011 Jul 1. PMID: 21983070.

  22. Tian P., Wang G., Zhao J., Zhang H., Chen W. Bifidobacterium with the Role of 5-Hydroxytryptophan Synthesis Regulation Alleviates the Symptom of Depression and Related Microbiota Dysbiosis. J. Nutr. Biochem. 2019;66:43–51.

  23. Ioana A. Marin, Jennifer E. Goertz, Tiantian Ren, Stephen S. Rich, Suna Onengut-Gumuscu, Emily Farber, Martin Wu, Christopher C. Overall, Jonathan Kipnis, Alban Gaultier. Microbiota alteration is associated with the development of stress-induced despair behavior. Scientific Reports, 2017; 7: 43859

  24. Tran N, Zhebrak M, Yacoub C, Pelletier J, Hawley D. The gut-brain relationship: Investigating the effect of multispecies probiotics on anxiety in a randomized placebo-controlled trial of healthy young adults. J Affect Disord. 2019 Jun 1;252:271-277.

  25. Qin Q., Liu H., Yang Y., Wang Y., Xia C., Tian P., Wei J., Li S., Chen T. Probiotic Supplement Preparation Relieves Test Anxiety by Regulating Intestinal Microbiota in College Students. Dis. Markers. 2021;2021:5597401.

  26. Laura Steenbergen, Roberta Sellaro, Saskia van Hemert, Jos A. Bosch, Lorenza S. Colzato. A randomized controlled trial to test the effect of multispecies probiotics on cognitive reactivity to sad mood. Brain, Behavior, and Immunity, 2015;

  27. Anna-Chiara Schaub, Else Schneider, Jorge F. Vazquez-Castellanos, Nina Schweinfurth, Cedric Kettelhack, Jessica P. K. Doll, Gulnara Yamanbaeva, Laura Mählmann, Serge Brand, Christoph Beglinger, Stefan Borgwardt, Jeroen Raes, André Schmidt, Undine E. Lang. Clinical, gut microbial and neural effects of a probiotic add-on therapy in depressed patients: a randomized controlled trial. Translational Psychiatry, 2022;

  28. Beibei Yang, Jinbao Wei, Peijun Ju, Jinghong Chen. Effects of regulating intestinal microbiota on anxiety symptoms: A systematic review. General Psychiatry, 2019; 32: e100056

Metylering:interaktioner mellan gener och näringsämnen

1.         de la Calle-Fabregat C, Morante-Palacios O, Ballestar E. Understanding the relevance of DNA methylation changes in immune differentiation and disease. Vol. 11, Genes. 2020.

2.         Craig PJ. Metal Cycles and Biological Methylation. In: The Natural Environment and the Biogeochemical Cycles. Berlin, Heidelberg: Springer Berlin Heidelberg; 1980. p. 169–227.

3.         Samavat H, Kurzer MS. Estrogen metabolism and breast cancer. Vol. 356, Cancer Letters. Elsevier Ireland Ltd; 2015. p. 231–43.

4.         Obeid R. The metabolic burden of methyl donor deficiency with focus on the betaine homocysteine methyltransferase pathway. Vol. 5, Nutrients. 2013. p. 3481–95.

5.         Razin A, Cedar H. DNA Methylation and Gene Expression. Vol. 55, MICROBIOLOGICAL REVIEWS. 1991.

6.         Moarii M, Boeva V, Vert JP, Reyal F. Changes in correlation between promoter methylation and gene expression in cancer. BMC Genomics. 2015 Oct 28;16(1).

7.         Barros SP, Offenbacher S. Epigenetics: Connecting environment and genotype to phenotype and disease. Vol. 88, Journal of Dental Research. 2009. p. 400–8.

8.         Robertson KD, Wolffe AP. DNA methylation in health and disease. Nature Reviews Genetics [Internet]. 2000;1(1):11–9.

9.         Greenberg MVC, Bourc’his D. The diverse roles of DNA methylation in mammalian development and disease. Vol. 20, Nature Reviews Molecular Cell Biology. Nature Publishing Group; 2019. p. 590–607.

10.        Lewin AH, Silinski P, Hayes J, Gilbert A, Mascarella SW, Seltzman HH. Synthesis and physicochemical characterization of the one-carbon carrier 10-formyltetrahydrofolate; a reference standard for metabolomics. Metabolomics. 2017 Oct 1;13(10).

11.        Forges T, Monnier-Barbarino P, Alberto JM, Guéant-Rodriguez RM, Daval JL, Guéant JL. Impact of folate and homocysteine metabolism on human reproductive health. Vol. 13, Human Reproduction Update. 2007. p. 225–38.

12.        Revuelta JL, Serrano-Amatriain C, Ledesma-Amaro R, Jiménez A. Formation of folates by microorganisms: towards the biotechnological production of this vitamin. Applied microbiology and biotechnology. 2018 Oct;102(20):8613–20.

13.        Scaglione F, Panzavolta G. Folate, folic acid and 5-methyltetrahydrofolate are not the same thing. Xenobiotica. 2014 May 1;44(5):480–8.

14.        Visentin M, Diop-Bove N, Zhao R, Goldman ID. The intestinal absorption of folates. Vol. 76, Annual Review of Physiology. 2014. p. 251–74.

15.        Brunaud L, Alberto J-M, Ayav A, Gérard P, Namour F, Antunes L, et al. Vitamin B12 is a Strong Determinant of Low Methionine Synthase Activity and DNA Hypomethylation in Gastrectomized Rats. Digestion. 2003;68(2–3):133–40.

16.        Scott J, Weir D. The methyl folate trap. The Lancet. 1981;318(8242):337–40.

17.        Shane B. Folate and Vitamin B12 Function. In: Lennarz WJ, Lane MD, editors. Encyclopedia of Biological Chemistry (Second Edition). Waltham: Academic Press; 2013. p. 324–8.

18.        Heal KR, Qin W, Ribalet F, Bertagnolli AD, Coyote-Maestas W, Hmelo LR, et al. Two distinct pools of B12 analogs reveal community interdependencies in the ocean. Proceedings of the National Academy of Sciences of the United States of America. 2017 Jan 10;114(2):364–9.

19.        Watanabe F. Vitamin B12 sources and bioavailability. Exp Biol Med (Maywood). 2007;10(232):1266–74.

20.        Jain S. Vitamin B6 (pyridoxamine) supplementation and complications of diabetes. Metabolism. 2007;(56(2)):168–71.

21.        Wu XY, Lu L. Vitamin B6 deficiency, Genome instability and cancer. Vol. 13, Asian Pacific Journal of Cancer Prevention. Asian Pacific Organization for Cancer Prevention; 2012. p. 5333–8.

22.        Harvard. Vitamin B6 [Internet]. Available from: https://www.hsph.harvard.edu/nutritionsource/vitamin-b6/

23.        McAuley E, McNulty H, Hughes C, Strain JJ, Ward M. Riboflavin status, MTHFR genotype and blood pressure: Current evidence and implications for personalised nutrition. In: Proceedings of the Nutrition Society. Cambridge University Press; 2016. p. 405–14.

24.        Peechakara B, Gupta M. Vitamin B2 (Riboflavin). Updated 2020 Jun 25. Treasure Island (FL): StatPearls Publishing; 2020.

25.        Evans JC, Huddler DP, Jiracek J, Castro C, Millian NS, Garrow TA, et al. Betaine-Homocysteine Methyltransferase: Zinc in a Distorted Barrel decade, elevated homocysteine has been widely recognized as an important independent risk factor for development of cardiovascular disease. Vol. 10, 1159.

26.        Nordgren KKS, Peng Y, Pelleymounter LL, Moon I, Abo R, Feng Q, et al. Methionine adenosyltransferase 2A/2B and methylation: Gene sequence variation and functional genomics. Drug Metabolism and Disposition. 2011 Nov;39(11):2135–47.

27.        Murray B, Antonyuk S v., Marina A, Lu SC, Mato JM, Samar Hasnain S, et al. Crystallography captures catalytic steps in human methionine adenosyltransferase enzymes. Proceedings of the National Academy of Sciences of the United States of America. 2016 Feb 23;113(8):2104–9.

28.        Zeisel SH. A brief history of choline. Vol. 61, Annals of Nutrition and Metabolism. 2012. p. 254–8.

29.        Vance DE. Phospholipid methylation in mammals: From biochemistry to physiological function. Vol. 1838, Biochimica et Biophysica Acta – Biomembranes. Elsevier B.V.; 2014. p. 1477–87.

30.        Ganz AB, Klatt KC, Caudill MA. Common genetic variants alter metabolism and influence dietary choline requirements. Vol. 9, Nutrients; 2017.

31.        Furness DLF, Fenech MF, Khong YT, Romero R, Dekker GA. One-carbon metabolism enzyme polymorphisms and uteroplacental insufficiency. American Journal of Obstetrics and Gynecology. 2008;199(3):276.e1-276.e8.

32.        Esse R, Barroso M, Almeida IT de, Castro R. The contribution of homocysteine metabolism disruption to endothelial dysfunction: State-of-the-art. Vol. 20, International Journal of Molecular Sciences. 2019.

33.        Boushey CJ, Beresford SAA, Omenn GS, Motulsky AG. A Quantitative Assessment of Plasma Homocysteine as a Risk Factor for Vascular Disease: Probable Benefits of Increasing Folic Acid Intakes. JAMA [Internet]. 1995 Oct 4;274(13):1049–57.

34.        Forges T, Monnier-Barbarino P, Alberto JM, Guéant-Rodriguez RM, Daval JL, Guéant JL. Impact of folate and homocysteine metabolism on human reproductive health. Vol. 13, Human Reproduction Update. 2007. p. 225–38.

35.        Furness D, Fenech M, Dekker G, Khong TY, Roberts C, Hague W. Folate, Vitamin B12, Vitamin B6 and homocysteine: Impact on pregnancy outcome. Maternal and Child Nutrition. 2013;9(2).

36.        Weiss N. Mechanisms of Increased Vascular Oxidant Stress in Hyperhomocysteinemia and Its Impact on Endothelial Function. Current Drug Metabolism. 2005 Mar 18;6(1):27–36.

37.        Tsang BL, Devine OJ, Cordero AM, Marchetta CM, Mulinare J, Mersereau P, et al. Assessing the association between the methylenetetrahydrofolate reductase (MTHFR) 677>T polymorphism and blood folate concentrations: A systematic review and meta-analysis of trials and observational studies. American Journal of Clinical Nutrition. 2015 Jun 1;101(6):1286–94.

38.        Colson NJ, Naug HL, Nikbakht E, Zhang P, McCormack J. The impact of MTHFR 677 C/T genotypes on folate status markers: a meta-analysis of folic acid intervention studies. European Journal of Nutrition. 2017;56(1):247–60.

39.        McNulty H, Dowey LRC, Strain JJ, Dunne A, Ward M, Molloy AM, et al. Riboflavin lowers homocysteine in individuals homozygous for the MTHFR 677C→T polymorphism. Circulation. 2006 Jan;113(1):74–80.

40.        Shane B, Pangilinan F, Mills JL, Fan R, Gong T, Cropp CD, et al. The 677C→T variant of MTHFR is the major genetic modifier of biomarkers of folate status in a young, healthy Irish population. The American Journal of Clinical Nutrition. 2018 Dec 1;108(6):1334–41.

41.        Kos BJP, Leemaqz SY, McCormack CD, Andraweera PH, Furness DL, Roberts CT, et al. The association of parental methylenetetrahydrofolate reductase polymorphisms (MTHFR 677 and 1298) and fetal loss: a case–control study in South Australia. Journal of Maternal-Fetal and Neonatal Medicine. 2020;33(5).

42.        Weisberg IS, Jacques PF, Selhub J, Bostom AG, Chen Z, Curtis Ellison R, et al. The 1298 A–C polymorphism in methylenetetrahydrofolate reductase (MTHFR): in vitro expression and association with homocysteine. Atherosclerosis. 2001 Jun;156(2):409—415.

43.        Kohlmeier M, da Costa K-A, Fischer LM, Zeisel SH. Genetic variation of folate-mediated one-carbon transfer pathway predicts susceptibility to choline deficiency in humans. 2005.

44.        Leclerc D, Wilson A, Dumas R, Gafuik C, Song D, Watkins D, et al. Cloning and mapping of a cDNA for methionine synthase reductase, a flavoprotein defective in patients with homocystinuria. Proceedings of the National Academy of Sciences of the United States of America. 1998 Mar 17;95(6):3059–64.

45.        Wilson A, Platt R, Wu Q, Leclerc D, Christensen B, Yang H, et al. A common variant in methionine synthase reductase combined with low cobalamin (vitamin B12) increases risk for spina bifida. Molecular genetics and metabolism. 1999 Aug;67(4):317—323.

46.        Gaughan DJ, Kluijtmans LA, Barbaux S, McMaster D, Young IS, Yarnell JW, et al. The methionine synthase reductase (MTRR) A66G polymorphism is a novel genetic determinant of plasma homocysteine concentrations. Atherosclerosis. 2001 Aug;157(2):451—456.