Nr 2, 2020: Mitokondrier

Mitokondrierna – kroppens energiverk av Lina Åhlén, hälsoskribent

  1. Marcheggiani F., Cirilli I., Orando P. et.al. Modulation of Coenzyme Q10 content and oxidative status in human dermal fibroblasts using HMG-CoA reductase inhibitor over a broad range of concentrations. From mitohormesis to mitochondrial dysfunction and accelerated aging. Aging. May 2019:10:11(9). https://www.ncbi.nlm.nih.gov/pubmed/31076563

  2. Hsu C-C, Tseng L-M., Lee H-C. Role of mitochondrial dysfunction in cancer progression. 2016. March

  3. Chen L., Knowlton A.A. Mitochondria and heart failure: new insights into an energetic problem. Minerva Cardiology. 2010. Apr 58(2) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3786553/

  4. Mortiboys H., Macdonald R., Payne T. Translational approaches to restoring mitochondrial function in Parkinson’s disease. 2018. Jan (582). https://febs.onlinelibrary.wiley.com/doi/pdf/10.1002/1873-3468.12920

  5. Pei-I T., Chin-Hsien L., Chung-Han H., et.al. PINK1 Phosphorylates MIC60/Mitofilin to Control Structural Plasticity of Mitochondrial Crista Junctions. Molecular Cell. 2018 March 69(5). https://parkinsonsnewstoday.com/2018/02/27/defects-in-mitochondria-linked-to-parkinsons-stanford-study/

  6. Perez Ortiz J.M., Swerdlow R.H. Mitochondrial dysfuncion in Alzheimer’s disease: Role in pathogenesis and novel therapeutic opportunities. British Journal of Pharmacology. 2019:176. https://bpspubs.onlinelibrary.wiley.com/doi/epdf/10.1111/bph.14585

  7. Ames B., Liu J., Killilea D.W. Age-associated mitochondrial oxidative decay: Improvement of carnitine acetyltransferase substrate-binding affinity and activity in brain by feeding old rats acetyl-l- carnitine and/or R-α-lipoic acid. 2002. Feb 99(4). https://www.pnas.org/content/99/4/1876.short

Mitokondriefunktion – grundläggande för vår hälsa av Markus Mattiasson, biomedicinare och hälsoskribent

  1. https://www.ncbi.nlm.nih.gov/pubmed/10066161

  2. https://www.ncbi.nlm.nih.gov/pubmed/26323761

  3. https://www.ncbi.nlm.nih.gov/pubmed/16860735

  4. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3951182/

  5. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1870771/

  6. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4019337/

  7. https://www.researchgate.net/publication/253648584_Mitochondria_functionality_and_sperm_quality

  8. https://www.ncbi.nlm.nih.gov/pubmed/23333405

  9. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4281487/

  10. https://www.sciencedirect.com/topics/medicine-and-dentistry/biotransformation

  11. https://www.ncbi.nlm.nih.gov/pubmed/23628605

  12. https://www.sciencedirect.com/science/article/pii/B9780128099650000057

  13. https://www.ncbi.nlm.nih.gov/pubmed/23981537

  14. https://www.ncbi.nlm.nih.gov/pubmed/29389735

  15. https://www.ncbi.nlm.nih.gov/pubmed/29339091

  16. https://www.sciencedirect.com/topics/medicine-and-dentistry/phospholipid

  17. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3178961/

  18. https://www.ncbi.nlm.nih.gov/pubmed/18162444

  19. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2990190/

  20. https://www.ncbi.nlm.nih.gov/pubmed/29315892

  21. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1540458/

  22. https://onlinelibrary.wiley.com/doi/abs/10.1002/cphy.c130043

  23. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1891963/

  24. https://www.jstage.jst.go.jp/article/jpfsm/6/3/6_151/_article

  25. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2635914/

  26. https://www.nature.com/articles/s41698-017-0038-6

  27. https://www.sciencedirect.com/science/article/pii/S0014299908002884

  28. https://www.ncbi.nlm.nih.gov/pubmed/10608918

  29. https://www.ncbi.nlm.nih.gov/pubmed/7813389

  30. https://www.ncbi.nlm.nih.gov/pubmed/17658628

  31. https://www.sciencedirect.com/science/article/pii/S0011393X02800546

  32. https://www.ncbi.nlm.nih.gov/pubmed/19641697

  33. https://www.ncbi.nlm.nih.gov/pubmed/17109576

  34. https://chrismasterjohnphd.com/tools/2017/12/20/consuming-creatine-in-foods-and-supplements

  35. https://examine.com/supplements/creatine/

  36. https://examine.com/supplements/coenzyme-q10/

  37. https://www.researchgate.net/publication/26869770_Potential_physiological_importance_of_PQQ

  38. https://www.ncbi.nlm.nih.gov/pubmed/7733865

  39. https://examine.com/supplements/pyrroloquinoline-quinone/

  40. https://www.ncbi.nlm.nih.gov/pubmed/16424117

  41. https://www.ncbi.nlm.nih.gov/pubmed/26226960

  42. https://www.ncbi.nlm.nih.gov/pubmed/24231099

  43. https://www.ncbi.nlm.nih.gov/pubmed/26782228

Metabolomik ger inblick i mitokondriens värld av Annie Pettersson, fil.mag. (biologi) från Uppsala universitet och fil.dr. (medicin) från Karolinska Institutet

  1. Astarita G, Langridge J. J Nutrigenet Nutrigenomics. 2013;6(4-5):181-200. An emerging role for metabolomics in nutrition science.

  2. Chen Q et al. Front Cell Neurosci. 2019 Apr 30;13:150. Urine Organic Acids as Potential Biomarkers for Autism-Spectrum Disorder in Chinese Children.

  3. Depeint F et al. Chem Biol Interact. 2006 Oct 27;163(1-2):94-112. Mitochondrial function and toxicity: role of the B vitamin family on mitochondrial energy metabolism.

  4. Filler K et al. BBA Clin. 2014 Jun 1;1:12-23. Association of Mitochondrial Dysfunction and Fatigue: A Review of the Literature.

  5. Gallagher R et al. Genetics in Medicine volume 20, pages 683–691(2018) Laboratory analysis of organic acids, 2018 update: a technical standard of the American College of Medical Genetics and Genomics (ACMG)

  6. Guillemin GJ et al. FEBS J. 2012 Apr;279(8):1356-65. Quinolinic acid, the inescapable neurotoxin.

  7. Kałużna-Czaplińska et al. Nutrition Research. Volume 31, Issue 7, July 2011, Pages 497-502. B vitamin supplementation reduces excretion of urinary dicarboxylic acids in autistic children

  8. Longo et al. Biochim Biophys Acta. 2016 Oct; 1863(10): 2422–2435. CARNITINE TRANSPORT AND FATTY ACID OXIDATION

  9. McKillop et al. Diabetes Care. 2011 Dec; 34(12): 2624–2630.

  10. Emerging Applications of Metabolomic and Genomic Profiling in Diabetic Clinical Medicine

  11. Moskowitz A et al. J Intensive Care Med. 2016 Mar;31(3):187-92. The Association Between Admission Magnesium Concentrations and Lactic Acidosis in Critical Illness.

  12. Nordholme et al. Läkartidningen. 2016;113:DR7E Tiaminbrist orsakade laktacidos hos patient med malnutrition – Många patienter i behov av behandling med tiamin missas sannolikt.

  13. Noto A et al.  J Matern Fetal Neonatal Med. 2014 Oct;27 Suppl 2:46-52. The urinary metabolomics profile of an Italian autistic children population and their unaffected siblings.

  14. Orozco JS et al. Transl Psychiatry. 2019 Oct 3;9(1):243. Metabolomics analysis of children with autism, idiopathic-developmental delays, and Down syndrome.

  15. Osiezagha, K et al. Innov Clin Neurosci. 2013 Apr; 10(4): 26–32. Thiamine Deficiency and Delirium

  16. Pieczenik SR & Neustadt J. Exp Mol Pathol. 2007 Aug;83(1):84-92. Mitochondrial dysfunction and molecular pathways of disease.

  17. Sun J et al. Per Med. 2013 Mar;10(2):149-161. Metabolomics as a tool for personalizing medicine: 2012 update.

  18. Teagarden et al. Case Rep Crit Care. 2017;2017:5121032. Thiamine Deficiency Leading to Refractory Lactic Acidosis in a Pediatric Patient.

  19. Tsoukalas D et al. Int J Mol Med. 2017 Jul;40(1):112-120. Application of metabolomics: Focus on the quantification of organic acids in healthy adults.

Deanna Minich – Vi måste ge mitokondrierna den näring de behöver av Nina Törmark, journalist

Fasta – ett kraftfullt verktyg för optimal hälsa av Annie Pettersson, fil.mag. (biologi) från Uppsala universitet och fil.dr. (medicin) från Karolinska Institutet

  1. Dror, et al. Postprandial macrophage-derived IL-1β stimulates insulin and both synergistically promote glucose disposal and inflammation. Nature Immunology, January 2017

  2. Seillet et al. Nat Immunol. 2020 Feb;21(2):168-177. The neuropeptide VIP confers anticipatory mucosal immunity by regulating ILC3 activity.

  3. Anton et al. Obesity (Silver Spring). 2018 Feb;26(2):254-268. Flipping the Metabolic Switch: Understanding and Applying the Health Benefits of Fasting.

  4. de Cabo &  Mattson. N Engl J Med 2019;381:2541-51. Effects of Intermittent Fasting on Health, Aging, and Disease

  5. Harvie & Howell. Potential benefits and harms of intermittent energy restriction and intermittent fasting amongst obese, overweight and normal weight subjects — a narrative review of human and animal evidence. Behav Sci (Basel) 2017; 7(1): E4.

  6. Furmli et al. Therapeutic use of intermittent fasting for people with type 2 diabetes as an alternative to insulin. BMJ Case Rep 2018; 2018:bcr-2017-221854.

  7. Sutton et al. Early time-restricted feeding improves insulin sensitivity, blood pressure, and oxidative stress even without weight loss in men with prediabetes. Cell Metab 2018; 27(6): 1212-1221.e3.

  8. Nencioni et al. Fasting and cancer: molecular mechanisms and clinical application. Nat Rev Cancer 2018; 18: 707-19.

  9. Choi et al.  A diet mimicking fasting promotes regeneration and reduces autoimmunity and multiple sclerosis symptoms. Cell Rep 2016; 15: 2136-46.

  10. Fitzgerald et al. Effect of intermittent vs. daily calorie restriction on changes in weight and patient-reported outcomes in people with multiple sclerosis. Mult Scler Relat Disord 2018; 23: 33-9.

  11. Johnson et al. Alternate day calorie restriction improves clinical findings and reduces markers of oxidative stress and inflammation in overweight adults with moderate asthma. Free Radic Biol Med 2007; 42: 665-74.

  12. Cignarella et al. Intermittent fasting confers protection in CNS autoimmunity by altering the gut microbiota. Cell Metab 2018; 27(6): 1222.e6-1235.e6.

Sött som socker men ändå inte av Pia Andrea, hälsoskribent